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Abstract
Geological Image Analysis Software (GIAS) combines basic tools for calculating object area, abundance, radius, perimeter, eccentricity, orientation, and centroid location, with the first automated method for characterizing the aerial distribution of objects using sample-size-dependent nearest neighbor (NN) statistics. The NN analyses include tests for: (1) Poisson, (2) Normalized Poisson, (3) Scavenged k = 1, and (4) Scavenged k = 2 NN distributions. GIAS is implemented in MATLAB with a Graphical User Interface (GUI) that is available as pre-parsed pseudocode for use with MATLAB, or as a stand-alone application that runs on Windows and Unix systems. GIAS can process raster data (e.g., satellite imagery, photomicrographs, etc.) and tables of object coordinates to characterize the size, geometry, orientation, and spatial organization of a wide range of geological features. This information expedites quantitative measurements of 2D object properties, provides criteria for validating the use of stereology to transform 2D object sections into 3D models, and establishes a standardized NN methodology that can be used to compare the results of different geospatial studies and identify objects using non-morphological parameters. 
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1. Introduction 
Geological image analysis extracts information from representations of natural objects that may either be captured by an imaging system (e.g., photomicrographs, aerial photographs, digital satellite imagery) or schematically rendered into visual form (e.g., geological maps). In addition to examining the properties of individual objects, spatial analysis may be used to quantify object distributions and investigate their formation processes.

ImageJ (Rasbald, 2005) is a commonly used image processing application that was developed as an open source Java-based program by the National Institutes of Health (NIH). Custom plug-in modules enable ImageJ to solve numerous tasks, including the analysis of vesicle size-frequency distributions within geological thin-sections (e.g., Szramek et al, 2006, Polacci et al., 2007). However, ImageJ and similar programs for Windows (e.g., Scion Image and ImageTool) and Macintosh (e.g., NIH Image) are not specifically designed for geological applications nor do they provide analytical tools for investigating patterns of spatial organization.

To take greater advantage of the information contained within geological images, we have developed Geological Image Analysis Software (GIAS). This program combines (1) an image processing module for calculating and visualizing object areas, abundance, radii, perimeters, eccentricities, orientations, and centroid locations, and (2) a spatial distribution module that automates sample-size dependent nearest neighbor (NN) analyses. Although other programs can perform the basic functions in the “Image Analysis" module, GIAS is the first program to automate sample-size-dependent analyses of NN distributions. 
2. Motivation

Nearest neighbor (NN) analysis is well-suited for investigating patterns of spatial distribution within intrinsically two-dimensional (2D) datasets, such as orthorectified aerial photographs and satellite imagery. Applications of NN analyses to remote sensing imagery include the study of volcanic landforms (Bruno et al., 2004; 2006; Baloga et al., 2007; Bishop, 2008; Hamilton et al., 2009; Bleacher et al., 2009), sedimentary mud volcanoes (Burr et al., 2009), periglacial ice-cored mounds (Bruno et al., 2006), glaciofluvial features (Burr et al., 2009), dune fields (Wilkins and Ford, 2007), and impact craters (Bruno et al., 2006). Despite widespread utilization of NN analyses, its value as a remote sensing tool and effectiveness as basis for comparison between different datasets is limited by the lack of a standardized NN methodology—particularly in terms of defining feature field areas, thresholds of significance, and criteria for apply higher-order NN methods. 

In addition to remote sensing applications, NN analyses can be used to study  objects in photomicrographs such as crystals (Jerram et al., 1996; 2003; Jerram and Cheadle, 2000) and vesicles. In this study, we emphasize the application of NN analyses to vesicle distributions to demonstrate how GIAS can be used to validate (or refute) the assumption of randomness, which is a prerequisite for effectively applying stereological techniques to derive vesicle volumes from photomicrographs and for selecting appropriate statistical models to characterize those vesicle populations.


Vesicle textures preserve information about the pre-eruptive history of magmas and can be used to investigate the dynamics of explosive and effusive volcanic eruptions (e.g., Mangan et al., 1993; Cashman et al., 1994; Mangan and Cashman 1996; Cashman and Kauahikaua, 1997; Polacci and Papale 1997; Blower et al., 2001; Blower et al., 2003; Gaonac'h et al., 2005; Shin et al., 2005; Lautze and Houghton, 2005; Adams et al., 2006; Polacci et al., 2006; Sable et al., 2006; Gurioli et al., 2008). Quantitative vesicle analyses stem from Marsh (1988), who explored the physics of crystal nucleation and growth dynamics to derive an analytical formulation for crystal size distributions. This research was then applied to numerous bubble size-frequency distribution studies (e.g., Sarda and Graham, 1990; Cashman and Mangan, 1994; Cashman et al., 1994; Blower et al., 2003). Early studies of vesicle distributions (e.g., Cashman and Mangan, 1994) were limited by their inability to characterize the full range of vesicle sizes because their methodology could not resolve the smallest vesicles. Nested photomicrographs solve this problem because photomicrographs captured at multiple magnifications enable the reconstruction of total vesicle size-frequency distributions (e.g., Adams et al., 2006; Gurioli et al., 2008). 

In general, vesicle studies are limited by two major factors: transformations of 2D cross-sections into representative vesicle volumes (Mangan et al., 1993; Sahagian and Proussevitch, 1998; Higgins, 2000; Jerram and Cheadle, 2000); and development of reliable statistical characterizations of vesicle populations in terms of distribution functions and their spatial characteristics (Morgan and Jerram, 2007; Proussevitch et al., 2007a). These difficulties have been partially addressed by improved statistical techniques for investigating vesicle populations; however, a single cross-section cannot be used to reconstruct a representative 3D vesicle distribution unless the objects viewed in a 2D section can be characterized using 2D reference textures with known 3D distributions (Jerram et al., 1996; 2003; Jerram and Cheadle 2000; Proussevitch et al., 2007a). Although synchrotron X-ray tomography is increasingly being used to directly generate 3D vesicle distributions (e.g., Gualda and Rivers, 2006; Polacci et al., 2007; Proussevitch et al., 2007b), nested datasets containing multiple Scanning Electron Microscope (SEM) images remain the most common input for vesicle studies because of their superior spatial resolution relative to X-ray tomography. To facilitate the analysis of vesicles in SEM imagery, GIAS can be used to determine the geometric properties of vesicles within the plane of a given photomicrograph and establish if objects fulfil the criteria of spatial randomness, which is required for transforming 2D sections into 3D models using stereology. 
3. Nearest neighbor (NN) analysis
Clark and Evans (1954) proposed a simple test for spatial randomness in which the actual mean NN distance (ra) in a population of known density is compared to the expected mean NN distance (re) within a randomly distributed population of equivalent density. Following Clark and Evans (1954), re and expected standard error (σe) of the Poisson distribution are:  
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where the input population density, ρ0, equals the number of objects (N) divided by the area (A) of the feature field (ρ0 = N / A). The following two test statistics (termed R and c) are used to determine if ra follows a Poisson random distribution:
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If a test population exhibits a Poisson random distribution, R should ideally have a value of 1, while c should equal 0. If R is approximately equal to 1, then the test population may have a Poisson random distribution. If R > 1, then the test population exhibits greater than random NN spacing (i.e., tends towards a maximum packing arrangement), whereas if R < 1, then the NN distances in the test case are more closely spaced than expected within a random distribution and thus exhibit clustering relative to the Poisson model.  
To identify statistically significant departures from randomness at the 0.95 and 0.99 confidence levels, |c| must exceed the critical values of 1.96 and 2.58, respectively (Clark and Evans, 1954); however, these critical values implicitly assume large sample populations (N > 104). Jerram et al. (1996) and Baloga et al. (2007) note that finite-sampling effects introduce biases into the variation of NN statistics. These biases become significant for small populations (N < 300) and thereby necessitate the use of sample-size-dependent calculations of R and c thresholds.
The NN methodology of Clark and Evans (1954) assumes that objects can be approximated as points. However, for frameworks of solid objects, NN statistics exhibit scale-dependent variations in randomness due to the restrictions imposed by avoiding overlapping object placements. For 2D sections through 3D distributions of equal-sized solid spheres, Jerram et al. (2003) define a porosity-dependent threshold for R, which they term the random sphere distribution line (RSDL). With increasing N (i.e., decreasing porosity), the RSDL threshold increases from a value just above 1 to a maximum of 1.65 at 37% porosity, based on the experimental spherical packing model of Finney (1970). Jerram et al. (1996, 2003) also note that compaction, overgrowth, and sorting can introduce systematic variations in R relative to the RSDL and thus, when correctly identified, can provide information relating to the relative importance of these processes during rock formation. 
In addition to sample-size-dependent tests for Poisson randomness, Baloga et al. (2007) proposed the following three NN models: 
1. Normalized Poisson NN distributions account for data resolution-limits, which require normalization of re, σe, skewness, and kurtosis values based on a user-defined minimum distance threshold. 
2. Scavenged Poisson NN distributions assume features consume (or “scavenge”) resources in their surroundings, which affects the kth nearest neighbor by increasing re relative to the standard Poisson NN model. The order of the scavenging model is given by the Poisson index, k, which identifies the number of NN objects participating in the scavenging process and, if k = 0, the standard Poisson NN distribution is obtained. 
3. Logistic NN distributions apply the classical probability distribution for self-limiting population growth due to the use of available resources. Under this probability assumption, NN distances become more uniform, which leads to smaller skewness, but larger kurtosis compared to the Poisson NN model. 

Sample-size-dependent R and c test statistics, in addition to the expected skewness versus kurtosis values, allow for robust statistical tests of spatial organization. However, prior to this study, these extensions to the classical NN method have not been automated and freely available for use. 
4. Method 
4.1. Input data and processing parameters
GIAS is designed to process two input data types: images and tables of object coordinates. In the first instance, images may include rectangular raster files (e.g., *.tiff, *.jpg, *.gif, etc.) encoded in 8-bit grey-scale formats. All inputs are assumed to have an orthogonal projection with equal x and y pixel dimensions. If the input image pixels are not square, their area can be uniquely specified. To appropriately scale the output results, the pixel size must be defined by the analyst for each input image. 
Image segmentation is achieved using Digital Number (DN) thresholding, such that inputs are converted to a binary threshold logical matrix. GIAS assumes input grey-scale pixel values >250 are white; however, the upper and lower thresholds can be adjusted in the input options. Within input images, black pixels are assumed to be the objects of interest (e.g., vesicles) whereas white pixels are assumed to be part of the background (e.g., non-vesicles). An option is provided for image inversion. 
Other than performing the binary conversion, GIAS does not modify input images. Consequently, pre-processing may be necessary to remove image artifacts and segment objects into feature classes. To facilitate image analysis and pre-processing of inputs to the NN module, GIAS supplies labeling information and metadata for each object in the image analysis output file; however, the level of image modification will depend upon the particular scientific investigation and the preferences of the analyst. 
Inputs to the NN module can be passed from the image analysis module or loaded as a two column table (tab- or space- delimited) with x-coordinates in the first column and y-coordinates in the second column. GIAS automatically checks input files for duplicate entries and retains only unique coordinate pairs. 
Slider bars control the detection thresholds for the minimum and maximum object areas, in addition to the distance threshold used within the Normalized Poisson tests. A check-box excludes objects that touch the periphery of the image from subsequent processing. This option is enabled by default because meaningful cross-sectional properties (e.g., area, geometry, and orientation) cannot be calculated for truncated objects. Calculations of object abundance (as a percentage of total image area) are based on total image properties and are unaffected by peripheral object exclusion. Once the input options are satisfactorily set, the analyst simply presses the “Process” button to calculate the output graphs and statistics. 
4.2. Output results
GIAS outputs its results to on-screen graphs and text boxes, which are presented in two tabbed panels. Statistics relating to the object area, geometry, and orientation are shown in the first panel, labeled “Image Analysis” (Figure 1). The frequency axis can be plotted in linear or log units with on-screen options for defining custom dimensions. Object areas, radii, perimeters, and eccentricities are presented as histograms, whereas object orientations are displayed using a rose plot. Object radii are estimated by calculating the radii of equal area circles. In addition to the graphical output, there are text-box summaries of the total number of objects, their abundance, minimum, maximum, mean, standard deviation (at 1 σ), skewness, and kurtosis based on the object area calculations. 
Results of the spatial analyses are summarized in a second panel, labeled “Nearest Neighbor Analysis” (Figure 2). These results include histograms of the measured NN distances, in addition to graphs of R, c, and skewness versus kurtosis (Baloga et al., 2007). The R and c values are presented with sample-size-dependent thresholds for rejecting the null hypothesis (i.e., a given model of re) at significance levels of 1 and 2 σ. By default, the program assumes a Poisson random model for the expected spatial distribution; however, the user may also view results based on Normalized Poisson, or Scavenged (k = 1 or 2) models. Similarly, the skewness versus kurtosis plots are provided with sample-size-dependent significance levels of 0.90, 0.95, and 0.99.
Textbox outputs provide the model-dependent value of re and summarize ra statistics, including the total number of objects, number within the convex hull, and NN distance statistics (minimum, maximum, mean, and standard deviation at 1 and 2 σ). The convex hull is a polygon defined by the outermost points in a feature field such that each interior angle of the polygon measurers less than 180º (Graham, 1972). The convex hull thus forms a boundary around a feature field with the minimum possible perimeter length (see Appendix 1 for examples). 

The input parameters and computed statistics from both tabbed panels can be output in separate user-named text files. The data are saved in a tab-delimited format, allowing the files to be viewed using a text editor or imported into a spreadsheet.
4.3. Implementation
GIAS is written and implemented in MATLAB with a Graphical User Interface (GUI) that is designed for use within the geological community. The program is available as preparsed pseudocode for use with MATLAB (provided both “Image Processing” and “Statistics” toolboxes are installed) or as a standalone application that can run on Windows and Unix systems without requiring MATLAB or its auxiliary toolboxes. These software products may be downloaded from the internet for free via http://www.geoanalysis.org.
The regionprops function within the MATLAB Image Processing toolbox calculates the following key properties of each object: area, centroid position, perimeter, eccentricity, orientation, equal-area circle equivalent diameter and a list of pixel positions within each vesicle. The pixel list is used to determine which objects are in contact with the image edge and the equal area circle diameters are used to calculate object radii. The eccentricity and orientation are calculated by fitting an ellipse about the object. The angle between the major axis of the ellipse and the x-axis of the image defines the orientation.
By default, the NN analysis utilizes centroid positions calculated in the image analysis module, however, object locations may be uploaded as a table of x- and y-coordinates. Within the NN module, the MATLAB function convhull is used to identify the vertices of the convex hull for all of the input objects. The function convhull is also used to calculate the area of the convex hull (Ahull) and to separate interior objects (Ni) from the hull vertices (see Appendix 1 for examples). 
NN distances are determined by calculating the Euclidean distance between each interior object (centroid) and all other objects within the dataset, including the vertices of the hull. The results for each interior point are sorted in ascending order to identify the minimum NN distance and calculate the actual mean NN distance (ra) by averaging the NN distances for all interior objects (Ni). The interior population density (ρi = Ni / Ahull), provides a statistical estimate of the true density within an infinite domain and thus substitutes for ρ0. We then calculate R as the ratio of ra-to-re. 
Using sample-size-dependent values of R, c, and their respective thresholds of significance, we may define the following scenarios. If the values of R and c fall within ±2 σ of their expected values, then the results suggest that the model correctly describes the input distribution. If the value of c is outside the range of ±2 σ, then the inference is that the input distribution is inconsistent with the model, regardless of the value of R. If c is outside ±2 σ, and R is greater than the +2 σ threshold, then the input distribution exhibits a statistically significant repelling relative to the model. Conversely, if c is outside the ±2 σ range, and R less then than the -2 σ threshold, then the input distribution is inferred to be clustered relative to the model. Lastly, if R is outside ±2 σ, and c is within the ±2 σ range, then the test results are ambiguous, which generally indicates that there is insufficient data to perform the analysis and/or the standard error (σe) of the input distribution is large.
One of the novel contributions of our application is the introduction of automated calculations of sample-size-dependent biases in NN statistics. Baloga et al. (2007) described how finite sampling would affect several NN models; however, they only implemented a solution for the Poisson NN case. In our application, we have automated the Poisson NN procedure, extended it to include the three other models of Baloga et al. (2007), and derived the k = 2 case for the scavenged NN distribution (Appendix 2). Automation of the NN method within GIAS enables users to rapidly determine if their data fulfills the size-dependent criteria of statistical significance for the following five spatial distribution models: (1) Poisson, (2) Normalized Poisson, (3) Scavenged k = 1; and (4) Scavenged k = 2. Table 2 summarizes the properties of these models.
To obtain sample-size-dependent values of R, c, and their confidence limits, we generated simulations in MATLAB. Following the method of Baloga et al. (2007), confidence limits for the Poisson and the Scavenged k = 1 and 2 models were simulated using 1000 random draws from a modeled distribution. However, for the Normalized Poisson model, limits for the standard Poisson case are employed because simulating unique limits for each user-defined distance threshold is computationally intensive in real-time (e.g., requiring approximately four minutes to perform the simulations using a computer with a 2 GHz processor and 1 GB of RAM).  
GIAS does not include the logistic density distribution described by Baloga et al. (2007) because its parameters (i.e., the logistic mean (m) and the standard deviation (b), see Table 2) are estimated using a best-fit to the input data. The logistic case therefore differs substantially from the other NN analyses because they involve a comparison between input spatial distributions and expected model distributions. Additionally, the fit of a logistic curve to an input distribution does not necessarily imply an underlying logistic process because other processes could generate distributions that better fits the data. Thus given the differences between the logistic density distribution described by Baloga et al. (2007) and the other Poisson NN models, we have omitted the logistic case from the geospatial analysis tools implemented within GIAS.
To correctly interpret the results of the Scavenging NN models, it is important to recognize that the formulation of Baloga et al. (2007) is a scale-free distribution. Modification to expected NN distances depend upon the number of objects participating in the scavenging process and not on the location of the objects. Consequently, the mean and standard deviation statistics are not directly related to the radius of the scavenged area. This is an unrealistic condition for resource-scavenging phenomena in nature, which have a fixed upper limit to r. Alternative modeling scenarios, with a user-defined scavenging radius, may be more appropriate for some applications—provided that a scale for the scavenging process can be determined. 
Distinguishing between Poisson NN and Scavenged Poisson NN models requires statistical separation of their respective NN distributions. The minimum number of objects required will depend on ρ0 and k. In Appendix 3, we show that separation of the Poisson and k = 1 Scavenged Poisson models, at the 95% confidence level, requires a minimum 50 to 60 objects for ρ0 values of 0.5 to 0.0005 objects / unit area, whereas 100 to 150 objects are required to distinguish between k = 1 and 2 models. 
In addition to sample-size-dependent R and c statistics, we expand upon the methods of Baloga et al. (2007) by simulating the sample-size-dependent range of expected skewness and kurtosis values for each NN hypothesis. Calculated confidence intervals—at 90%, 95% and 99%—are plotted within GIAS to illustrate the expected ranges of skewness versus kurtosis for each model. Plots of skewness versus kurtosis are also useful for discriminating between populations with otherwise similar R and c values, such as ice-cored mounds (e.g., pingos) and volcanic rootless cones (Bruno et al., 2006). 
5. Results
To demonstrate the utility of GIAS, we have applied the program to vesicle patterns within proximal magmatic tephra deposits from Fissure 3 of the 1783-1784 Laki cone row, Iceland. Tables 3 and 4 summarize the results of the “Image Analysis” and “Nearest Neighbor Analysis” modules, respectively. In Appendix 1, we include additional examples of geospatial distributions that are clustered and repelled relative to the Poisson NN model. These examples are based on the Hamilton et al. (2010a, 2010b) and demonstrate how statistical NN analyses can be combined with field observations to obtain information about the effects of environmental resource limitation on the spatial distribution of volcanic landforms. Appendix 1 also explores how the geospatial analysis tools that are provided within GIAS can be applied to remote sensing data to quantitatively compare the spatial distribution of landforms in different planetary environments, supply non-morphological evidence to discriminate between feature identities, and examine self-organization processes within geological systems.
5.1. Vesicle analysis

Vesicle characteristics can provide information about the pre-eruptive history of magmas, volatile exsolution dynamics, and conduit ascent processes—all of which are important factors in controlling the intensity of explosive volcanic eruptions. Quantification of these parameters relies largely upon the use of vesicle size, number, and volume distributions to establish links between natural volcanic samples and experimental data (Adams et al., 2006). Nested SEM images at several magnifications are typically used in combination with stereology (e.g., Sahagian and Proussevitch, 1998) to transform 2D vesicle properties into 3D distributions. Although acquisition and analysis of a complete nested SEM dataset is outside the scope of this study, we present an example of how GIAS can be used to analyze vesicle properties within a single image. For this example, we have chosen a magmatic tephra sample (LAK-t-23c, Emma Passmore, unpublished data) from 1783-1784 Laki eruption in Iceland. The resolution of the image is 3.81 μm / pixel and we have followed the method of Gurioli et al. (2008) by using a minimum object area threshold of 20 pixels (76.2 μm2) to avoid complications associated with poorly resolved objects near the limit of resolution within our data. 

The output of the "Image Analysis" module (Table 3 and Figure 1) reveals that the sample has a vesicularity of 65.48% and—excluding objects in contact with the periphery of the image—there are 537 objects larger than the detection threshold of 76.2 μm2. Assuming the properties of an equal area circle, the vesicle diameters range from 19.21 μm to 2.85 × 103 μm, with a mean of 3.01 × 102 μm ±6.89 × 102 (at 1 σ). The ratio of equal area circle circumference to object perimeter is 0.77 ±1.53 (at 1 σ); however; for the 21 vesicles larger than 3.10 × 105 μm2 the ratio decreases to 0.55 ±0.21, which indicates that the largest vesicles strongly deviate from a circular geometry (see the graph of “Objects Perimeters”). The vesicles have a mean eccentricity of 0.71 ± 0.18 and a mean orientation trending 7.27° to 187.27° ±43.91° (n.b., 90° points towards the top of the image; see “Object Eccentricity” and “Object Orientations” in Figure 1). 

The NN module results (Table 4 and Figure 2) show that NN distances between vesicle centroids range from 28.05 to 1.53 ×103 μm, with a mean (ra) of 1.75 × 102 ±1.15 ×102 (see “Nearest Neighbor Frequency Distribution” in Figure 2). The sample has R and c values within the 2 σ thresholds of significance (Figure 2) and thus we conclude that the vesicle centroids exhibit a Poisson (random) distribution. We have also analyzed the sample using a Normalized Poisson threshold of 5 pixels (19.24 μm), which corresponds to the diameter of a circle that is equal in area to our object area threshold of 20 pixels. Given this threshold, the sample exhibits a repelled distribution with R and c values greater than their respective upper 2 σ limits. The Scavenged k = 1 and 2 cases overestimate re relative to ra, and thus result in clustered results relative to both Scavenged models. 

The GIAS outputs suggest that vesicles within this sample exhibit an overall Poisson distribution despite the presence of a vesicle fabric trending 7.27° to 187.27° ±43.91°. The random distribution of vesicles supports the usage of a stereological transformation, however, deformation and coalescence have caused vesicles >3.10 × 105 μm2 to strongly deviate from a circular geometry. Consequently, if the vesicles represented within this thin-section were transformed into a 3D distribution using stereology, it would be necessary to acknowledge propagating errors associated with the non-circular geometry of the largest vesicles in the sample. Additionally, it is important to recognize the resolution limitations associated with analysis because we have applied a minimum object area threshold of 20 pixels, which excludes all vesicles <76.2 μm2 (i.e., 630 of 1167 objects). A detection threshold of 20 pixels is appropriate for studies of vesicle size-frequency distributions because an misclassification of 1 pixel results in an error of 5% of the estimate of total object area (Lucia Gurioli, personal communication, 2009). Nevertheless, this threshold appears insufficient for filtering artifacts associated with the geometric properties of the smallest vesicles in the input image. For instance, eccentricity values calculated for vesicles within the Laki magmatic tephra sample appear to be very high (0.71 ± 0.18), but this is a resolution-induced artifact resulting from pixel-scale asymmetries in a large population of small vesicles. Resolution limitations also affect the Normalized Poisson NN distribution because the large number of objects below the detection thresholds leads to underestimates of ρ0 and re, which in turn results in a repelled distribution relative to the model. In instances where the majority of objects are below the detection limit of analysis, it is therefore imperative to use nested image datasets, and/or high magnification mosaics to resolve the properties of the smallest objects in a given distribution. 
6. Discussion 
For randomly distributed spherical objects, stereological techniques may be used to convert cross-sectional areas into volumes (Sahagian and Proussevitch, 1998). Higgins (2000) and Morgan and Jerram (2007) have also applied 2D to 3D transformations for crystal shapes such as cubes and prisms based upon a large number of observed cross-sectional areas. Nevertheless, for irregular object geometries, transformations do not exist for generating an accurate 3D model from a single 2D image (Mock and Jerram, 2005; Sable et al., 2006). For vesicle studies, direct measurements of 3D vesicle distributions using X-ray microtomography can be used to circumvent the problems associated with stereological transformations (e.g., Gualda and Rivers, 2006; Polacci et al., 2007; Proussevitch et al., 2007b), but the resolution of synchrotron-based X-ray tomography is insufficient to resolve micron-sized vesicle walls, which can result in erroneously large estimates of vesicle permeability (Gurioli et al., 2008). Tomographic resolution limitations similarly prohibit the detection of sub-micron vesicles, which decreases estimates of vesicle number densities relative to investigations of higher resolution SEM images (Gurioli et al., 2008).  Consequently, even given the availability of 3D imaging techniques, thin-section analysis continues to supply unique information about vesiculation processes and, therefore, 2D image processing should continue to be explored. 

Similarly, NN analysis of a single 2D image cannot resolve the spatial organization of the centroids in 3D, unless additional reference information is provided (e.g., Jerram et al., 1996; 2003; Jerram and Cheadle, 2000). Instead, 2D methods characterize the aerial distribution of objects within the plane of the image. When applying NN analyses to vesicle distributions in thin-sections, it is important to remember that object centroids are unlikely to coincide with the center of a vesicle in 3D, especially when vesicles are irregularly shaped. To obtain a more meaningful statistical description of vesicle organization it may be necessary to analyze several photomicrographs—preferably three mutually perpendicular thin-sections that sample the principal component directions of the vesicle fabric. Vertical offsets in the position of objects in orthometric aerial photographs and satellite imagery may similarly introduce discrepancies between projected object separations and true NN distances, but the vertical offsets are generally small relative to the separation of objects in the plane of the image and hence the differences can be ignored.
7. Conclusions 
We have developed Geological Image Analysis Software (GIAS) for calculating the geometric properties of objects and quantifying their spatial distribution. The program improves the efficiency and reproducibility of geological object characterizations by combining image processing tools for calculating object areas, abundance, radii, perimeters, eccentricity, orientation, and centroid location with sample-size-dependent NN tests for (1) Poisson; (2) Normalized Poisson; (3) Scavenged, k = 1; (4) and Scavenged k = 2 distributions. These geospatial analyses have not been implemented in other software packages and, consequently, GIAS represents a novel approach to characterizing vesicle distributions in thin-sections and examining the spatial organization of other geological features in datasets ranging from photomicrographs (e.g., Section 5) to remote sensing imagery of planetary surfaces (e.g., Appendix 1 and Hamilton et al., 2010b).

Future work will focus on developing the following aspects of GIAS: (1) image segmentation using Kriging analysis of DN histograms (e.g., Oh and Lindquist, 1999); (2) automated object recognition (e.g., Proussevitch and Sahagian, 2001; Lindquist et al., 1996; Shin et al, 2005); (3) geometric cluster analysis (e.g., Still et al., 2004); (4) statistical analyses to address truncated and multimodal populations (e.g., Proussevitch et al., 2007a); (5) processing nested image datasets (e.g., Gurioli et al., 2008); (6) incorporating stereological techniques for converting 2D data into 3D distributions and then using the 3D models to calculate vesicle number density (e.g., Sahagian and Proussevitch, 1998; Proussevitch et al., 2007a); (7) developing NN analyses for 3D datasets (Jerram and Cheadle, 2000; Mock and Jerram, 2005); and (8) treatment of solid object interactions on NN statistics (e.g., Jerram et al.; 2003).
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Appendix 1: Additional nearest neighbor analysis examples 
Explosive interactions between lava and groundwater can generate volcanic rootless cones (VRCs). VRCs are well suited to nearest neighbor (NN) analyses because they occur in groups, which consist of a large number of landforms that share a common formation mechanism. Geological Image Analysis Software (GIAS) includes NN analysis tools that were used by Hamilton et al. (2010b) to investigate self-organization processes within VRC groups and quantitatively compare the spatial distribution of VRCs in the Laki lava flow in Iceland to analogous landforms in the Tartarus Colles Region of Mars.

Figure 1 presents examples of rootless eruption sites within the Hnúta and Hrossatungur groups of the Laki lava flow. In the field, Differential Global Positioning System (DGPS) measurements were used to delimit rootless crater floors and their centroids were assumed to represent the surface projection of underlying rootless eruption sites (Hamilton et al., 2010a, 2010b). Hamilton et al. (2010a) used tephrochronology and stratigraphic relationships to divide the complete study area (Figure 1A) into chronologically and spatially distinct groups, domains, and subdomains. Figure 1B provides an example of a VRC subdomain (Hnúta Subdomain 1.1). Figures 1C and D show the convex hull boundaries of the complete study area and Subdomain 1.1 of the Hnúta Group, respectively. Figure 1 also shows the locations of the convex hull vertices (Nv) and interior rootless eruption sites (Ni). 



Identification of internal boundaries within the Hnúta and Hrossatungur groups allowed Hamilton et al. (2010b) to examine the effects of scale and resource availability on the spatial distribution explosive lava-water interactions. Relative to the Poisson NN model, rootless eruption sites in both the complete study area (Ni = 2193) and Hnúta Subdomain 1.1 (Ni = 98) have |c| and |R| values that exceed their respective sample-size-dependent limits of confidence at 2 σ. Consequently, neither of these distributions are constant with a Poisson random model. Within the complete study area, R is 0.72, which is lower than the 2 σ confidence limit of R (0.98) and implies that the distribution is clustered with respect to the Poisson NN model. In Hnúta Subdomain 1.1, R is 1.23, which is above the upper 2 σ confidence limit of 1.16 and implies that the distribution is repelled relative to a Poisson NN model. Hamilton et al. (2010b) interpret these patterns of spatial distribution within the context of resource abundance and depletion though competitive utilization. On regional scales, VRCs cluster in locations that contain sufficient lava and groundwater to initiate rootless eruptions, but on local scales rootless eruption sites tend to self-organize into distributions that maximize the utilization of limited groundwater resources. Hamilton et al. (2010b) interpret topography to be the primary influence on regional clustering because it would control initial groundwater abundance and regions of lava inundation. In contrast, they attribute local repelling to the non-initiation, or early cessation, of rootless eruptions at unfavorable localities due to groundwater depletion in a competitive system that is analogous to an aquifer perforated by a network of extraction wells. 

Baloga et al. (2007) showed that rootless eruption sites in the Tartarus Colles Region of Mars have R = 1.22 and c = 6.14. These NN statistics are similar to those observed within Hnúta Subdomain 1.1 (R = 1.23 and c = 4.45), which suggests that a similar formation process in both environments. Thus the statistical NN analysis tools provided within GIAS can be combined with field observations and remote sensing to quantify patterns of spatial distribution and infer underlying mechanisms of formation within a diverse range of geological systems. 
Appendix 1 Figure 1:

A and B depict rootless eruption sites (red circles) superimposed on a 0.5 m/pixel color aerial photograph showing 1783-1784 Laki eruption lava flows in Iceland. A: Full extent of Hnúta and Hrossatungur groups and an inset (white rectangle) denoting Hnúta Subdomain 1.1 (shown in B). C and D correspond to identical regions shown in A and B, respectively, and provide examples of convex hull boundaries, rootless eruption sites that form convex hull vertices (Nv), and interior points (Ni).  
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Appendix 1 Figure 1

Appendix 2: Derivation for the Scavenged Nearest Neighbor (k = 2) case
The probability of finding exactly k points within a circle of radius r on a plane can be found using the Poisson distribution:
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where ρ0 is the spatial density—defined by the number of objects (N) divided by the area of the feature field (A). If the process of creating a point on the plane consumes (or “scavenges”), resources that would have formed the kth nearest neighbor, then the process can be modelled as (Baloga et al., 2007):
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For k = 2, the density distribution of the function can be written as:
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For convenience, we write
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To find the mean of this distribution, we multiply by r, integrate from 0 to ∞, and normalise the resulting equation, to obtain first moment of the distribution
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The integrals can be solved using integration by parts and two mathematical identities for the odd and even terms of r (e.g., Stevenson, 1992). For the even terms, the following identity can be used,
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while odd integrals of the type, 
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can be solved using the substitution x2 = u and solving using integration by parts,

e.g.,
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This leads to the following solution for the mean distribution of the nearest neighbour distances for k = 2:
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The second moment 
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The standard deviation is calculated using the identity:
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Thus, the expected Standard Error (σe) is:
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where N is the number of points in the area of interest. The third and fourth moments can be derived as above, leading to:
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Using the moment formulae for skewness and kurtosis:
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 we obtain:
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Appendix 3: Separation of population means
To examine the approximate number of samples required to find a statistically significant separation of two Gaussian distributions, where the expected means and standard deviations are known, a commonly-used test is to examine if zero lies within the following confidence interval:
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where s​0 and s1 are the sample means, μ0 and μ1 are the expected means and σ0 and σ1 are the expected standard deviations. N can be varied to estimate the number of samples required to separate the distributions. In particular, if zero is within the interval, then there is no discernible difference between the means of the distributions at the 95% confidence level.

This method is applied to simulate two different means based upon the expected values of the Poisson and the Scavenged NN when k = 1 and k = 2. To simplify the problem, an approximation to a normal distribution is assumed.

Simulation from two normal distributions with increasing numbers of N was coded in MATLAB. We found the number of samples required to statistically differentiate between the distributions by varying ρ0.

For PNN and Scavenged NN, k = 1:

	ρ0

(objects / unit area)
	Minimum N required to separate Poisson NN  and Scavenged NN (k​ = 1)

	0.5
	50

	0.05
	60

	0.005
	60

	0.0005
	60


For Scavenged NN, k = 1 and Scavenged NN, k = 2:
	ρ0

(objects / unit area)
	Minimum N required to separate Poisson NN  and Scavenged NN (k​ = 2)

	0.5
	100

	0.05
	120

	0.005
	130

	0.0005
	150


Given that these simulations assume Normal distributions, it would be wise to regard them as indicative of the minimum number of data points required to separate the competing models. A much larger number of samples should be used separate the Scavenged NN, k​ = 1 and k = 2 models because their expected means are relatively close together. 
Electronic Supplements 

(1) MATLAB preparsed pseudo code and standalone MATLAB executable file, available to the public at http://www.geoanalysis.org. 

(2) GIAS help file
Figures and Tables
Tables

Table 1: Notation.
Table 2: Nearest neighbor model properties (after Baloga et al., 2007). 
Table 3: “Image Analysis” module: summary of results. 
Table 4: “Nearest Neighbor Analysis” module: summary of results. 

Figures
Figure 1: Image analysis program in “Image Analysis” mode, with maximum object areas truncated to ~104 pixels for visualization purposes which excludes very large (and least circular) vesicles from displayed plots and histograms. Note that object thresholding does not affect results presented in Tables 3 and 4. 
Figure 2: Image analysis program in “Nearest Neighbor Analysis” mode with outputs displaying results for a Poisson NN test.  
Table 1.

	Variable
	Definition

	A
	Area of a feature field

	Ahull
	Area of the convex hull

	C
	Statistic for comparing observed (actual) to expected mean NN distances

	k 
	Poisson index

	N
	Number of features within a sample population

	Ni
	Number of features within the convex hull

	Nv
	Number of features forming the vertices of the convex hull

	NN
	Abbreviation for nearest neighbor

	P
	Probability

	R
	Statistic for comparing actual (ra) to expected (re) mean NN distances

	R
	Radial distance

	ro
	Threshold distance used to calculate Normalized Poisson NN distributions

	ra
	Mean NN distance observed in the data

	re
	Mean NN distance calculated from a given NN model (e.g., Poisson)

	P
	Probability density

	ρ0
	Population (spatial) density of the input features (ρ0 = N / A)

	ρi
	Population (spatial) density of the input features (ρi = Ni / Ahull)

	Σ
	Standard deviation

	σe
	Standard error


Table 2.

	Statistic
	Poisson
	Scavenge k = 1
	Scavenge k = 2
	            Normalized NN
	       Logistic

	Probability Density (P)
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Table 3. 
	Image Analysis


	Magmatic vesicles
(base unit: μm)

	Resolution (pixel size)
	3.81 μm

	Minimum object area 
	20 pixels = 76.2 μm2

	Total number of objects 

(excluding boundary objects)
	537



	Abundance (% of total)
	65.48

	Area (min. to max.)
	2.90 ×102 to 6.40 ×106

	Mean area (±1 σ)
	7.11 ×104 (±3.73 ×105)

	Eccentricity (min. to max.)
	0.00 to 0.97

	Mean eccentricity (±1 σ)
	0.71 (±0.18)

	Perimeter (min. to max.)
	56.50 to 3.55 ×104

	Mean perimeter (±1 σ)
	8.64 ×102 (±2.29 ×103)

	Orientation (min. to max.)
	-89.32 to 90.00

	Mean orientation (±1 σ)
	7.27  (±43.91)


Table 4.
	Nearest Neighbor (NN) 
	Magmatic vesicles

	Analysis 
	(base unit: μm)

	Input distribution properties
	

	Resolution (pixel size)
	3.81 μm

	Minimum object area
	20 pixels = 76.2 μm2

	Objects inside convex hull (Ni)
	520

	Interior object density (ρi)
	7.79 ×10-6

	Range of NN distances 
	28.05 to 1.53 ×103

	Mean NN distance (ra; ±1 σ)
	1.75 ×102 (±1.15 ×102)

	Skewness
	2.48

	Kurtosis 
	16.13

	
	

	Poisson model 
	

	Expected mean NN distance (re)
	1.79 ×102

	R with thresholds at 2 σ
	0.98 (0.97 and 1.07)

	c with thresholds at 2 σ
	-0.91 (-1.33 and 2.83)

	Conclusions (c value)


	Model supported (<2 σ)



	Normalized Poisson model 
	

	Distance threshold
	5 pixels = 19.05 μm

	Expected mean NN distance (re)
	1.50 ×102

	R with thresholds at 2 σ
	1.17 (0.97 and 1.07)

	c with thresholds at 2 σ
	3.51 (-1.34 and 2.88)

	Conclusions (c value)


	Model rejected (>2 σ)

Repelled vs. Normalized

	
	

	Scavenged (k = 1) model 
	

	Expected mean NN distance (re)
	2.69 ×102

	R with thresholds at 2 σ
	0.65 (0.99 and 1.06)

	c with thresholds at 2 σ
	-21.82 (-0.69 and 3.91)

	Conclusions (c value)


	Model rejected (>2 σ)

Clustered vs.  k = 1

	Scavenged (k = 2) model 
	

	Expected mean NN distance (re)
	3.36 ×102

	R with thresholds at 2 σ
	0.52 (1.00 and 1.06)

	c with thresholds at 2 σ
	-37.05 (-0.14 and 4.78)

	Conclusions (c value)


	Model rejected (>2 σ)

Clustered vs. k = 2
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Figure 2
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